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Analysis of a Curved Beam Using Classical 
and Shear Deformable Beam Theories 

Kijun Kang* and Jiwon Han* 
(Received May 19, 1997) 

Both the exact closed-form solution and a numerical solution by the differential quadrature 

method (D.Q.M.) are obtained to predict the out -of -p lane  static behavior of a curved beam 

subjected to torque, based on the curved-beam version of  the classical (Bernoulli-Euler) and 
shear deformable (Bresse-Timoshenko) beam theories. Deflections, twist angles, angles of 

rotation, bending moments and twisting moments are calculated for the case of a circular arc of 

circular cross section with clamped and simply supported boundary conditions, and the results 

obtained by both methods (exact and D. Q. M. ) are compared. It is found that the D.Q.M. gives 

good accuracy for only a limited number of grid points. 
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I. Introduction 

"['he out -of -p lane  behavior of  a curved shaft 

due to torque has been previously treated by 

Eubanks (1963), Cheney (1965) and Bert (1989) 

based on the classical curved beam theory in 

which transverse shear deformation is not consid- 

ered. The classical theory of the bending and 

twisting of thin rods was utilized by Eubanks 

(1963) to determine the nonlinear deformation of 

an inextensible thin rod of circular centerline 

which is subjected to an axial torque. It was 

assumed that the rod is supported at its ends by 

flexible moment-free bearings, and that the ends, 

while constrained to lie on a given line, were free 

to move along this line. Cheney (1965) gave an 

alternative solution which would clarify the 

results obtained by Eubanks (1963). Eubanks's 

solntion was based on an unwieldy approach 

using the Kirchhoff rod equations, cheney's solu- 

tion used thin-ring theory but obtained an errone- 

ous solution, and Bert's solution was formulated 
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directly from thin-r ing theory and was solved 

directly assuming that the twisting moment was 

uniformly distributed. 

The purpose of the present work is to obtain 

exact solutions for out -of -p lane  deflections, twist 

angles, angles of rotation, bending moments and 

twisting moments in a curved beam due to torque 

based on the classical and shear deformable beam 

theories, and to demonstrate the application of 

the differential quadrature method (D.Q.M.) to 

obtain accurate approximate solutions. The exact 

solutions are compared with those obtained by 

the D.Q.M. for the case of a circular arc of 

circular cross section with clamped and simply 

supported boundary conditions. 

2. Theoret ical  Consideration and 
Closed-Form Solut ions 

2.1 Classical beam theory 
The curved shaft considered is shown in Fig. 1. 

The equilibrium equations for out -of -p lane  bend- 

ing and twisting of a thin circular arc can be 

expressed as follows (Volterra, 1952): 

M~'+ M~=O ; - M x + . M ~ = O  (1) 
where Mx and Mz are the respective bending and 
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Fig. 1 

~ 1.-2 

J o 

Geometry of curved beam. 

twisting moments at a given circumferential angu- 
lar position r and a prime denotes differentiation 
with respect to r 

The constitutive equations for small deflections 
and rotations are 

EIx v" 

where EI~ and G] are the respective flexural and 
torsional rigidities, R is the center-line radius of  
the member, v is the out-of-plane deflection, and 
~ is the twist angle. Substituting Mx and Me 
from Eqs. (2) into gqs. (l) gives the following 
governing differential equations: 

. . . .  

R t- + 1 +  ~ " = 0  (3) EIz 

(1 + EG-~/x ) ~ - +  EG---~/x ~ " -  q)---0 (4) 

Now, using v" from Eq. (4) in Eq. (3), one 
obtains the following differential equation 

r162  ~=0  (5) 

which has the general solution 

r 1 6 2  =C~ cos r  C2 sin r 
+ C3r sin r  C4r cos r (6) 

where the C's are constants of integration. In 
view of Eq. (4), the general solution for the out-  
of-plane deflection is 

v ( r  C lcos  r  r 1 6 2  r 
R 

2 C3 cos r 
- C4r cos r  (G]/EIz)  + f 

_~ 2C4sin ~b + B 0 r  (7) 
(G]/EIx) + 1 

Choosing the origin for r to be at the midpoint 
of  the member and using the antisymmetric nature 
of the problem, one may write 

v(r = - v ( -  r (8) 

Thus, B1, C1 and C3 must vanish. 
If the member is simply supported flexurally at 

each end, then the boundary conditions can be 
expressed in the following form 

Mx(_+a) =0 ,  v(_+a) =0 ,  
M z ( §  = +  T (9) 

where a is one half of  the total included angle of  
the member and T is the applied torque at each 
end of the member. Thus, 

TR ,- a { TR '~ 
B o = ~ T ,  ,~2=s~d\~f- ], c.,=0 (10) 

If  the member is clamped flexurally at each end, 
then the boundary conditions can be expressed in 
the following form 

v(+_a) =0, v'(_+a) =0, 
Mz( + a )=  +- T ( l l )  

Thus, 

B o -  TR  (G]/EIx) +1  
G] 2q cos a+ (G]/EIx) +1 '  

C4 = qBo (12) 

C2 = C4 ( G ] / E I x )  + 1  a c o s  a 

+ B o a ]  (13) 

where q = (sin a - -  a cos a) / (sin a cos a -  a).  

2.2 Shear deformable beam theory' 
Rao(1971), neglecting the warping deforma- 

tion (as is appropriate for the circular cross 
section considered here), obtained the following 
equilibrium equations: 

s __ gr ,=0 14) 
R 

G v ' ,  O, gr,, - - x ~ s ~ -  (1 +/z) 

+ ( a + x G s ) ~ = 0  15) 

/z09"-- ~ +  (1+/~) ~ ' = 0  16) 
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Hhere ~ is the angle of rotation due to pure out-  

of-plane bending, and x is the shear correction 

factor. For  simplicity of analysis, the following 

dimensionless variables have been introduced: 

s=AR2/I~, ~=GJ/EIx (17) 

where A is the cross-sectional area, s is the 

slenderness ratio, and/.t  is the rigidity ratio of the 

member. Substituting v' from Eq. (15) into Eq. 

(14) and using the ant• nature of the 

problem give the following general solutions 

�9 (r = C1 sin r 1 6 2  cos r (18) 

v(r 
R = -  Cl sin r  C2r cos r 

2C2sin r ~-C3r (19) 
/1+1 

gr(r  = - C1 cos r  C2(r s in r  r 

) g + l  c o s r  +C4 (20) 

If  the member is simply supported flexurally at 

each end, then the boundary conditions can be 

expressed in the following form: 

Mx( • = +_ E_~_~ ( ~ _  gr,) =0 ,  

v(+_a) =0,  

Mz(• T (21) 

Thus 

TR C 3 = ( l + , J - J  ~C4, C4 = ~ f - ,  ~ x s  / 

C1: .a ( I + , J ~ c 4  C 2 : 0  (22) 
s i n  r l x X S  / ' 

If the member is clamped flexurally at each end, 

then the boundary conditions can be expressed in 

the following form 

g ( - + a )  =0 ,  v(_+a) =0 ,  

Mz(++_a)=+_G~JR ( ~ + ~ ' ) = •  (23) 

Thus, 

C4 = TR /1+1 
GJ 2pcos  a + / ~ + l '  

+ J c3=(1 /~Z(s ) c4 
C 1 F , ~ / 2 s i n a  a a)+C3a 1, I = ~ L  ~2 \  ~ - f  cos 

C 2 =  PC4 (24) 

where p = [ s i n  a -  ( l + J / I x x s )  a cos a ] / ( s i n  a 

COS d ' - -  Q) �9 

3. Differential Quadrature Method 

In many cases, moderately accurate solutions 

which can be calculated rapidly are desired at a 

few points in the respective physical domains. 

These solutions have tradit ionally been obtained 

by the standard finite difference and finite element 

methods which must be computed based on a 

large number of points. The mentioned methods 

depend strongly on the nature and refinement of 

the discretization of the domain. However, in 

order to get results even with only limited accu- 

racy at or near a point of interest for a compli- 

cated problem, solutions often have to be comput- 

ed based on a large number of surrounding points 

since the accuracy and stability of the afore- 

mentioned classical methods depend strongly on 

the nature and refinement scheme adopted to 

d i s c r e t i z e  the  d o m a i n .  C o n s e q u e n t l y ,  

computational efforts are often considerable for 

these standard methods. In order to overcome the 

aforementioned complexities, an efficient proce- 

dure called the differential quadrature method 

was introduced by Bellman and Cast• (1971). By 

formulating the quadrature rule for a derivative 

as an analogous extension of quadrature for inte- 

grals, they proposed the differential quadrature 

method as a new technique for the numerical 

solution of initial value problems of ordinary and 

partial differential equations. It was applied for 

the first time to the static analysis of structural 

components by Jang, Bert and Striz (1989). The 

versatility of the D.Q.M. to engineering analysis 

in general, and to structural analysis in particular, 

is becoming increasingly evident by the number of 

related publications in recent years. Kukreti, 

Farsa and Bert (1992) calculated the fundamental 

frequencies of tapered plates, and Farsa, Kukreti 

and Bert (1993) applied the method to the analy- 

sis and detailed parametric evaluation of the 

fundamental frequencies of general anisotropic 

and laminated plates. In another development, the 

quadrature method was introduced in lubrication 

mechanics by Malik and Bert (1994). Kang, Bert 
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and Striz (1995) applied the method to the vibra- 

tion analysis of shear deformable circular arches. 

From a mathematical point of view, the applica- 

tion of the differential quadrature method to a 

partial differential equation can be expressed as 

follows: 

N 

L{ f (x)}~ = E Wof(x~) 
j = l  

for i, j = 1, 2, ..., N (25) 

where L denotes a differential operator, xj are the 

discrete points considered in the domain, f ( x j )  
are the function values at these points, W~ are the 

weighting coefficients attached to these function 

values, and N denotes the number of discrete 

points in the domain. This equation, thus, expres- 

ses as the derivatives of a function at a discrete 

point in terms of the function values at all discrete 

points in the variable domain. 

The general form of  the function f ( x )  is taken 

a s  

f k ( x ) = x  ~-~ for k = l ,  2 , 3 , . . . , N  (26) 

If the differential operator L represents an n th 

derivative, then 

N 
52, 14%x?-' = ( k - I )  ( k - 2 ) . . .  ( k -  I"l)Xi k-n-1 

j = l  

for i, k = l ,  2, " ' ,  N (27) 

This expression represents N sets of N linear 

algebraic equations, giving a unique solution for 

the weighting coefficients, W,~, since the coeffi- 

cient matrix is a Vandermonde matrix, which 

always has an inverse as described by Hamming 

(1973). Thus, the method can be used to express 

the deriwitives of a function at a discrete point in 

terms of the function values at all discrete points 

in the variable domain. 

4. A p p l i c a t i o n  

4.1 Classical  beam theory 
Applying the differential quadrature method to 

Eqs. (3) and (4) gives 

N N I. GJ 1 ~ 4 ~  Dov~ + ~ T -  D-ff~ Bovj 
l teJO J = l  12~1X l t O ' 0  j = l  

G] 1 N 
+ ( 1  + ~ - ) ~ 0 2  j ~ B , j ~ J -  0 (28) 

G J  1 N N 
E L  OoZ--J~l B~ 

-- ~ , .=0 (29) 

where Bi~ and Dij are the weighting coefficients 

for the second and fourth derivatives, respectively, 

along the dimensionless axis X defined as 

X = 0  (30) 
00 

Here, 0 is the circumferential angular position 

measured from the left support and 00(=2~) is 

the total opening angle. 

Considering the symmetry of  the loading, one 

can express the boundary conditions tbr simply 

supported ends, given by Eqs. (9), and the deflec- 

tion at the midpoint  of the member in the differen- 

tial quadrature form as follows: 

Vl~-O at X = O  (31) 

1 1 TR A2iq)s+ A2jvj - ~]  .= .= 

at X = 0 + 3  (32) 

Fix 1 N 

at X = 0 + 3  (33) 

U(N + I)/2 

at X = 0 . 5  (34) 

EIx 1 u 
~ -( (l)u-1--R-~o2 ~= B(~-l,sVj)=O 

at X = l - 3  (35) 
N N 1 1 

(70 \ j =  1 IX j =  / ( ) J  

at X = 1 -  3 (36) 
vu:=0 at X = 0  (37) 

where Aej and A(N-1) are the weighting coeffi- 

cients for the first derivatives. Here 3 denotes a 

very small dimensionless distance measured along 

the dimensionless axis from each boundary end. 

This set of equations together with the appropri-  

ate boundary conditions can be solved for the 

deflection and twist angle. 

Similarly, the boundary conditions for clamped 

ends, given by Eqs. (11), and the deflection at the 

midpoint  of  the member can be expressed in the 

differential quadrature form as follows: 

vx=0 at X = 0  (38) 
1 ~ 1 N TR 

~ - (  "~. Azi~.i +-~'~]. A2jvj ~=-~,. 
U0 \ j = l  " -gl: j =  X , /  Q r J  
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at X = O + a  (39) 
N 

~Aa~v~=O at X = O +  ~ (40) 
d = l  

V(N+I)/2 at X = 0.5 (41) 
N 

~A(u_u~v~=0 at X = l - 3  (42) 
d=l  

1 1 TR 
0o A(~-~)~+-R~A(~-.~v~ = G] 

at X =  1-- 8 (43) 
v u = 0  at X = 0  (44) 

The bending moments and twisting moments, 
given by Eq. (2), can be expressed in differential 
quadrature form as follows: 

M EIx 1 

_ G J  ~ 1 ~ M . - ( ~ o ) C ~ = A ~ r  (46, 

This set of  equations together with the appro- 
priate boundary conditions can be solved to 
obtain the out-of-plane static behavior of the 
curved beam subjected to end torques. 

4.2 Shear deformable beam theory 
Laura and Gutierrez (1993) applied the differ- 

ential quadrature method to the analysis of  vibrat- 
ing Bresse-Timoshenko straight beams. Applying 
the method to shear-deformable curved beams, 
Eqs. (14), (15), and (16), one obtains 

N N G 1 G 1 x--~s-D-~.B#v~- x ~ s - z  ~ A ~ = O  (47) 
J~, -~.UO j=l  ~ {70 j = ,  

G 1 G .  . 1 ~  
- x ~ s ~ . v ,  • (1 +/z) 00~=~= A . @  

1 , ~ B . ~  + ,u+ xGs gri=0 0~'= ( ) (48) 

1~' ~-0 J~ ~l~o2j~=lBij~J--.= ~)i+ ( l+ /z )  .= A ~ = 0  

(49) 

The boundary conditions for simply supported 
ends, given by Eqs. (21), and the deflection at the 
midpoint of  the member can be expressed in 
differential quadrature form as follows: 

va=0 at X = 0  (50) 

1 u ~j~A2APj+ gr2= TR/  GJ 

at X = O + 3  (51) 
Elx 1 N 

at X = 0 + d  (52) 
v(N+u/z=0 at X = 0 . 5  (53) 

EIz [ .~ 1 ~ ) 

at X = l - 8  (54) 

1 u 
, , :  re~G] 

at X = 1 - 8  (55) 
vu=O at X = I  (56) 

Similarly, the boundary conditions for clamped 
ends, given by Eqs (23), and the deflection at the 
midpoint of the member can be expressed in 
differential quadrature form as follows: 

Vl=O at X = O  (57) 
1 u 

~o~=Az~j+~'2=TR/GJ at X = 0 + d  (58) 

~ = 0  at X = 0 + ~  (59) 

v(u+l)n=0 at X = 0 . 5  (60) 
(61) ~N_1)=0 at X = l - 3  

1 u 
~-o ~=~ A(~-~.q~ + ~u-1) = TR/G] 

at X =  1 -  ~ (62) 

v u = 0  at X = I  (63) 

The bending moments and twisting moments 
can be expressed in differential quadrature form 
as follows: 

EIx 1 N 

Mz = ( G--~ )(  ~ri + 1 " ~ ,  A~Oj/  (64) 
UOJ=I  / 

5. Numerical  Results and 
Comparisons 

Based on the above derivations, the deflections, 
twist angles, angles of rotation, bending moments 
and twisting moments for the out-of-plane behav- 
ior of  the member are calculated by a closed-form 
solution and by the differential quadrature 
method. The deflections, twist angles, angles of  
rotation, bending moments and twisting moments 
are evaluated for the case of a circular arc with 
circular cross section under clamped and simply 
supported boundary conditions, and numerical 
results are compared between the two solution 
methods. The ratio of the center-line radius R to 
the radius of  cross section r is 5.0, and the 
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T a b l e  1 Twist  angle ~ * =  q)GJ/TR for ou t -o f -p l ane  behavior  of  circular arc beam and clamped ends with 

circular cross section for a range of  grid points  using classical beam theory; v=0 . 3 ,  0o= 180 ~ and 6" 

= 1 x 10 -s. 

Exact 
N u m b e r  of  grid points,  N 

0, degrees 

0 ~ 7 9 11 13 

--0.8511 -0 .8597  -0 .8509  --0.8512 --0.8512 

Table  2 Twist  angle q)*=q)GJ/TR for ou t -o f -p l ane  behavior  of  circular arc beam and clamped ends with 

circular cross section for a range of  8 using classical beam theory; v=0 .3 ,  00=180 ~ and N = 1 3 .  

Exact 

O, degrees 8 

0 ~ 1 X 10 -3  1 X 10 -4  1 X 10 -5  1 X 10 -6  

--0.8511 --0.8537 --0.8514 --0.8512 --0.8511 

Table  3 Deflection v*=vGJ/TR z and twist angle ~*=~GJ/TR  for o u t - o f - p l a n e  behavior  of  circular arc 

beam and clamped ends with circular cross section using classical beam theory; v=0 .3  and 00=180 ~ 

0, v* q)* 

degrees Exact D . Q M .  Exact D.Q.M. 

0 ~ 0.0 0.0 --0.8511 --0.8512 

18 ~ --0.009935 --0.009933 --0.5623 --0.5623 

136 ~ --0.02435 --0.02435 --0.3359 --0.3359 

54 ~ -- 0.02863 -- 0.02863 -- 0.1767 -- 0.1767 

'72 ~ --0.01897 --0.01897 --0.07281 --0.07281 

90 ~ 0.0 0.0 0.0 -- 2.0 x 10 -7 

Table 4 Deflection v* = vGJ/TR 2 and twist angle a)* = ~GJ/TR for ou t -o f -p l ane  behavior  of  circular arc 

beam and clamped ends with circular cross section using classical beam theory; v = 0 . 3  and 0O=90 ~ 

O, v* ag* 

degrees Exact D.Q.M. Exact D . Q M .  

0 ~ 0.0 0.0 -0 .6268  -0 .6268  

9 ~ - 0.0004702 - 0.0004701 -- 0.4779 -- 0.4779 

18 ~ -- 0.001124 -- 0.001124 --0.3439 --0.3439 

27 ~ -- 0.001298 -- 0.001298 -- 0.2221 -- 0.222 l 

36 ~ -- 0.0008508 -- 0.0008507 -- O. 1088 -- O. 1088 

45 ~ 0.0 0.0 0.0 -- 2.0 X 10 -7 
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T a b l e  5 
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Deflec t ion  v* = vGJ/TR z and twist  angle  $ *  = #GJ/TR  for o u t - o f - p l a n e  behav io r  of  c i rcu la r  arc 

beam and s imply  suppor ted  ends wi th  c i rcu la r  cross sect ion using classical  beam theory; v = 0 . 3  and 

8 ~  180 ~ 

8, v* ~*  

degrees Exact  D.Q.M. Exact  D.Q.M. 

0 ~ 0.0 0.0 - 1.571 - 1.571 

18 ~ 0.2373 0.2373 -- 1.494 -- 1.494 

36 ~ 0.3283 0.3283 -- 1.271 -- 1.271 

54 ~ 0.2950 0.2950 -- 0.9233 -- 0.9233 

72 ~ 0.1712 0.1712 --0.4854 --0.4854 

90 ~ 0.0 0.0 0.0 --5.5 x 10 -7 

T a b l e  6 Deflec t ion  v*=vGJ/TR z and twist  angle  ~ * = ~ G J / T R  for o u t - o f - p l a n e  behav io r  0f  c i rcular  arc 

beam and s imply  suppor ted  ends wi th  c i rcu la r  cross sect ion us ing classical  beam theory; v = 0 . 3  and 

80=90  ~ . 

8, v* ~*  

degrees Exact  D.Q.M. Exact  D.Q.M. 

0 ~ 0.0 0.0 --0.7854 --0.7854 

9 ~ -- 0.02455 -- 0.02455 -- 0.6529 -- 0.6529 

18 ~ -- 0.03302 -- 0.03302 -- 0.5043 -- 0.5043 

27~ --0.02907 --0.02907 --0.3432 - 0 . 3 4 3 2  

36 ~ --0.01668 --0.01668 --0.1738 --0.1738 

45 ~ 0.0 0.0 0.0 - - 2 . 0 x  10 -7 

P o i s s o n ' s  r a t i o  o f  t he  m e m b e r ,  u, is 0.3. T h e  s h e a r  for  a c i r c u l a r  c r o s s  s e c t i o n  u s i n g  e l a s t i c i t y  t heo ry .  

T a b l e  7 Bending  momen t  M * = M x / T  and twis t ing  momen t  M~*=M~/T for o u t - o f - p l a n e  behav io r  of  

c i rcu la r  arc beam and c lamped  ends with c i rcu la r  cross sect ion us ing  classical  beam theory; v = 0 . 3  

and  80 = 180 ~ 

8, M* M* 

degrees Exact  D.Q.M. Exact  D.Q.M. 

0 ~ - 0 . 7 1 9 7  --0.7197 1.0 1.0 

18 ~ -- 0.6844 -- 0.6844 0.7776 0.7776 

36 ~ --0.5822 --0.5822 0.5770 0.5770 

54 ~ --0.4230 --0.4230 0.4178 0.4178 

72 ~ --0.2224 --0.2224 0.3156 0.3156 

90 ~ 0.0 0.0 0.2803 0.2804 

c o r r e c t i o n  f a c t o r  x is the  e s t a b l i s h e d  v a l u e  (0.89) 
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Tab le  8 Bending moment  M~*=Mx/T and twisting moment  M * = M f f T  for o u t - o f - p l a n e  behavior  of  

circular arc beam and simply supported ends with circular cross section using classical beam theory; 

v = 0 . 3  and 80 = 180 ~ 

8, Mx* M* 

degrees Exact D.Q.M. Exact D.Q.M. 

0 ~ 0.0 0.0 1.0 1.0 

18~ 0.0 0.0 1.0 1.0 

36 ~ 0.0 0.0 1.0 1.0 

54 ~ 0.0 0.0 1.0 1.0 

72 ~ 0.0 0.0 1.0 1.0 

90 ~ 0.0 0.0 1.0 1.0 

Table  9 Deflection v * =  vGJ/TR 2 for ou t -o f -p l ane  behavior  of  circular arc beam and clamped ends with 

circular cross section using shear deformable beam theory; u=0 .3 ,  R/r=5.0,  00=90 ~ and 00= 180 ~ 

U* U* 8, 

(00=90 ~ ) 

0, 

(Oo=18o ~ ) Exact D.Q.M. Exact D.Q.M. 

0 '~ 0.0 0.0 0 ~ 0.0 0.0 

9" 0.003807 0.003808 18 ~ -- 0.004603 -- 0.C~4600 

18 '~ 0.004696 0.004697 36 ~ - 0.01697 - 0.01698 

27 '~ 0.003868 0.003868 54 ~ - 0.02201 - 0.02200 

36 ~ 0.002127 0.002127 72 ~ -0 .01512 -0 .01512  

45 ~ 0.0 0.0 90 ~ 0.0 0.0 

Table  10 Twist  angle q )*=  ~G]/TR for ou t -o f -p l ane  behavior  of  circular arc beam and clamped ends with 

circular cross section using shear deformable beam theory; u=0.3,  R/r=5.0, 00=90 ~ and 80=180 ~ 

r q~* 8, 

(00=90 ~ ) 

0 o 

Exact 

--0.6771 

D.Q.M. 

--0.6771 

9 ~ --0.5255 --0.5255 

18 ~ --0.3841 --0.3841 

27 ~ --0.2510 --0.2510 

36 ~ --0.1240 --0.1240 

45 ~ 0.0 --2.9 X 10 -7 

i 0, 
t 

(00= 18o o) 

0 o 

Exact D.Q.M. 

--0.8864 --0.8865 

--0.5958 --0.5959 18 ~ 

36 ~ --0.3645 --0.3645 

54 ~ --0.1974 --0.1974 

72 ~ 

90 ~ 

--0.08371 -- 0.08372 

0.0 --5.5 • 10 -7 
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Table 11 
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Angle  of  ro ta t ion  ~ * =  ~'GJ/TR for o u t - o f - p l a n e  behav io r  of  c i rcu la r  arc beam and c l amped  ends 

with c i rcu la r  cross sect ion us ing shear  de fo rmab le  beam theory;  u : 0 . 3 ,  R/r=5.0,  00=90  ~ and 0 0 :  

180 ~ . 

O, 

( 0 o = 9 0  ~ Exact  D.Q.M. 

0~ 

(0o=180  ~ ) Exact  

gr* 

D.Q.M. 

0.0 0 ~ 0.0 0.0 0 ~ 0.0 

9 ~ - -0.02341 - -0.02341 18 ~ - -0 .06043 - -0 .06043 

18 ~ --0.03769 --0.03769 36 ~ --0.05525 --0.05525 

27 ~ --0.04570 --0.04570 54 ~ --0.01945 --0.01944 

36 ~ --0.04961 --0.04961 72 ~ 0.01617 0.01617 

45 ~ --0.05076 --0.05076 90 ~ 0.03053 0.03052 

Table 12 Deflect ion v * =  vGJ/TR 2 for o u t - o f - p l a n e  b e h a v i o r  of  c i rcu la r  arc beam and s imply  suppor ted  ends 

wi th  c i rcu la r  cross section us ing shear  de fo rmab le  beam theory;  u = 0 . 3 ,  R/r=5.0,  00=90  ~ and 00= 

180 ~ . 

O~ 

( 0 0 = 9 0  ~ ) Exact  

u* 

D.Q.M. 

Or 

( 0 o = 1 8 0  ~ ) Exact  

U* 

D.Q.M. 

0 ~ 0.0 0.0 0 ~ 0.0 0.0 

9 ~ 0.02510 0.02510 18 ~ 0.2426 0.2426 

18 ~ 0.03376 0.03376 36 ~ 0.3357 0.3357 

27 ~ 0.02973 0.02973 54 ~ 0.3016 0.3016 

36 ~ 0.01705 0.01705 72 ~ 0.1751 0.1751 

45 ~ 0.0 0.0 90 ~ 0.0 0.0 

Table 13 Twis t  angle  ~ * =  ~C:]/TR for o u t - o f - p l a n e  behav io r  of  c i rcu la r  arc beam and s imply  suppor ted  

ends with c i rcu la r  cross sect ion us ing shear  de fo rmab le  beam theory;  u----0.3, R/r=5.0,  00=90  ~ and 

0 o =  180 o . 

0~ 

( 0 0 = 9 0  ~ ) Exact  D.Q.M. 

0~ 

(00=180  ~ ) Exact  D.Q.M. 

0 ~ --0.8035 --0.8031 0 ~ --1.6061 --1.6061 

9 ~ --0.6675 --0.6675 18 ~ --1.5275 - - I .5275 

18 ~ --0.5156 --0.5156 36 ~ --1.2994 - - I .2994  

27 ~ --0.3510 --0.3510 54 ~ --0.9440 --0.9440 

36 ~ --0.1777 --0.1777 72 ~ --0.4963 --0.4963 

45 ~ 0.0 - -7 .3  X 10 -7 90 ~ 0.0 - - 2 . 9 X  10 -7 
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Table 14 A n g l e  o f  r o t a t i o n  ~ * =  r f o r  o u t - o f - p l a n e  b e h a v i o r  o f  c i r c u l a r  a r c  b e a m  a n d  s i m p l y  

s u p p o r t e d  e n d s  w i t h  c i r c u l a r  c r o s s  s e c t i o n  u s i n g  s h e a r  d e f o r m a b l e  b e a m  t h e o r y ;  v = 0 . 3 ,  R / r  = 5 . 0 ,  00 

= 9 0  ~ a n d  8 o = 1 8 0  ~ 

8~ 

( 0 o = 9 0  ~ ) 

8~ 

(0O= 180 o ) 

Or, 

E x a c t  D . Q . M .  E x a c t  D . Q . M .  

0 ~ 0 . 1 9 7 0  0 . 1 9 7 0  0 ~ 1.0 1.0 

9 ~ 0 . 0 8 1 2 2  0 . 0 8 1 2 2  18 ~ 0 . 5 0 3 7  0 . 5 0 3 7  

18 ~ - - 0 . 0 1 1 9 0  - - 0 . 0 1 1 9 0  36 ~ 0 . 0 5 5 9 6  0 . 0 5 5 9 6  

27 ~ - -  0 . 0 8 0 1 0  - -  0 . 0 8 0 1 0  54 ~ - -  0 . 2 9 9 4  - -  0 . 2 9 9 4  

36 ~ - 0 . 1 2 1 7  - -  0 . 1 2 1 7  72 ~ - -  0 . 5 2 7 5  - -  0.5;275 

45 ~ - -  0 . 1 3 5 7  - -  0 . 1 3 5 7  9 0  ~ - -  0 .6061  - -  0 .6061  

T a b l e  15 B e n d i n g  m o m e n t  M~ = M x / T  f o r  o u t - o f - p l a n e  b e h a v i o r  o f  c i r c u l a r  a r c  b e a m  a n d  c l a m p e d  e n d s  w i t h  

c i r c u l a r  c r o s s  s e c t i o n  u s i n g  s h e a r  d e f o r m a b l e  b e a m  t h e o r y ;  v = 0 . 3 ,  R / r = 5 . 0 ,  8 0 - 9 0  ~ a n d  0 0 = 1 8 0 " .  

Mx* M~* 8, 

( 8 0 = 9 0  ~ ) E x a c t  D . Q M .  

8~ 

(0o= 180 ~ E x a c t  D . Q . M .  

0 ~ - - 0 . 6 3 9 5  - - 0 . 6 3 9 5  0 ~ - - 0 . 7 1 9 6  - - 0 . 7 1 9 7  

9 ~ - - 0 . 5 3 1 6  - - 0 . 5 3 1 6  18 ~ - 0 . 6 8 4 4  - - 0 . 6 8 4 4  

18 ~ - - 0 . 4 1 0 6  - - 0 . 4 1 0 6  36 ~ - 0 . 5 8 2 2  - - 0 . 5 8 2 2  

27 ~ - 0 . 2 7 9 5  - 0 . 2 7 9 5  54 ~ - - 0 . 4 2 3 0  - - 0 . 4 2 3 0  

36 ~ - 0 . 1 4 1 5  - - 0 . 1 4 1 5  72 ~ - - 0 . 2 2 2 4  - - 0 . 2 2 2 4  

45  ~ 0 .0  - - 4 . 0 •  10 -5 [ 9 0  ~ 0 .0  - - 2 . 7 •  10 -v 

T a b l e  16 B e n d i n g  m o m e n t  M~* = M,:/T f o r  o u t - o f - p l a n e  b e h a v i o r  o f  c i r c u l a r  a r c  b e a m  a n d  s i m p l y  s u p p o r t e d  

e n d s  w i t h  c i r c u l a r  c r o s s  s e c t i o n  u s i n g  s h e a r  d e f o r m a b l e  b e a m  t h e o r y ;  v = 0 . 3 ,  R / r = 5 . 0 ,  0 o = 9 0  ~ a n d  

80 = 180 ~ . 

( 0 o = 9 0  ~ 

0 r 0 .0  

9 ~ 0 .0  

18 ~ 0 .0  

27 ~ 0 .0  

36 ~ 0 .0  

45 ~ 0 .0  

M~* 

E x a c t  D . Q . M .  

0 .0  

0 .0  

0 .0  

0 .0  

0 .0  

0 .0  

8~ 

( 0 o = 1 8 0  ~ ) E x a c t  

M~* 

D . Q . M .  

0.0 0.0 

0.0 0.0 

72 ~ 

9 0  ~ 

0 ~ 0 .0  0 .0  

18 ~ 0 .0  0 .0  

36 ~ 0 .0  0 .0  

54 ~ 0 .0  0 .0  
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T a b l e  17 

Kijun Kang and Jiwon Han 

Twist ing moment  M~* =M~/T for o u t - o f - p l a n e  behavior  of  circular arc beam and clamped ends 

with circular cross section using shear deformable beam theory; v=0 .3 ,  R/r=5.0, 0o=90 ~ and 00 = 

180 ~ . 

8~ 

(80=90 ~ ) Exact 

M* 

D.Q.M. 

8~ 

(0o= 18o ~ Exact 

iV/* 

D.Q.M. 

0 ~ 1.0 1.0 0 ~ 1.0 1.0 

9 ~ 0.9078 0.9078 18 ~ 0.7776 0.7776 

18 ~ 0.8337 0.8337 36 ~ 0.5770 0.5770 

27 ~ 0.7794 0.7794 54 ~ 0.4178 0.4178 

36 ~ 0.7463 0.7463 72 ~ 0.3156 0.3156 

45 ~ 0.7351 0.7351 90 ~ 0.2803 0.2804 

T a b l e  18 Twist ing moment  M~* =Mz/T for o u t - o f - p l a n e  behavior  of  circular arc beam and simply supported 

ends with circular cross section using shear deformable beam theory; u=0 .3 ,  R/r=5.0, 8 ~  ~ and 

8 ~  180 o. 

8, 

(80=90 ~ ) Exact D.Q.M. 

8~ 

(Oo= 18o ~ Exact 

M* 

D.Q.M. 

0 ~ 1.0 1.0 0 ~ 1.0 1.0 

9 ~ 1.0 1.0 18 ~ 1.0 1.0 

18 ~ 1.0 1.0 36 ~ 1.0 1.0 

27 ~ 1.0 1.0 54 ~ 1.0 1.0 

36 ~ 1.0 1.0 72 ~ l.O 1.0 

45 ~ 1.0 1.0 90 ~ 1.0 1.0 

T a b l e  19 Deflection v * =  vGJ/TR 2 for variations in ratio of  ou t -o f -p l ane  behavior  of  circular arc beam and 

simply supported ends with circular cross section using shear deformable beam theory; v = 0 . 3  and 

Oo = 180 ~ 

O, v* (Exact) 

degrees Ratio of  center-l ine to radius of  cross section R / r  

00 = 180 ~ 1.0 5.0 10.0 15.0 20.0 25.0 50.0 

0 ~ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

18 ~ 0.3706 0.2426 0.2386 0.2379 0.2376 0.2375 0.2373 

36 ~ 0.5128 0.3357 0.3302 0.3291 0.3288 0.3286 0.3284 

54 ~ 0.4607 0.3016 0.2966 0.2957 0.2954 0.2952 0.2950 

72 ~ 0.2675 0.1751 0.1722 0.1718 0.1715 0.1714 0.1713 

90 ~ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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For classical thin curved beam theory, Tables I 

and 2 present the results of convergence studies 

relative to the number of grid points N ~ parame- 

ter, respectively. Table I shows that the accuracy 

of the numerical solution increases with increas- 

ing N, passes through a maximum, but the 

decreases due to numerical instabilities if N 

becomes too large. Table 2 shows how the numer- 

ical solution is sensitive to the choice of ~. The 

optimal ~alue of 0 is found to be 1 • 10 -5 tol :~: 10 -6, 

which is obtained from tr ial-and-error calcu- 

lations. The solution accuracy decreases due to 

numerical instabilities if 3 becomes too small or 

too large. The remainder of the numerical results 

are computed with thirteen discrete points along 

the dimensionless x-axis and ~=1 • 10 -5 . For 

members with either clamped or simply supported 

ends and opening angles of 180 ~ and 90 ~ , the 

deflections v* and the twist angles ~* are sum- 

marized tbr classical beam theory in Tables 3--6, 

and the bending moments Mff and twisting 

moments Me* are summarized for classical beam 

theory in Tables 7 and 8. The deflections v*, the 

twist angles ~* and angles of rotation ~r* due to 

pure bending are summarized for shear deforma- 

ble beam theory in Tables 9-- 14, and the bending 

moments M~* and twisting moments Me* are sum- 

marized for shear deformable beam theory in 

Tables 15--18. Table 19 shows the variations in 

the ratio of center-line radius to radius of cross 

section. From Tables 3--6 and Tables 9--14, for 

the case of clamped ends, both deflections v* and 

twist angles ~* are smaller than those for the case 

of simply supported ends for the opening angles 

of 90 ~ and 180 ~ and for the opening angle of 90 ~ 

the angles of rotation ~* are also smaller than 

those for the opening angle of 1800 for clamped 

ends and simply supported ends. From Tables 7 

--8 and Tables 15--18, the twisting moment 

distribution M* is uniformly distributed for sim- 

ply supported ends, but varies for clamped ends. 

The bending moment M~* is identically zero along 

the entire length of the member for simply suppor- 

ted ends, but varies for clamped ends. From Table 

19, it is seen that when the ratio R / r  is less than 

10.0, the variations in the ratio have a significant 

effect on the deflections. Table 19 also shows that 

shearing deformable beam theory becomes more 

significant as the ratio decreases be low 10.0. 

Eubanks (1963) calculated the deflections based 

on the classical curved beam theory using the 

Kirchhoff rod equations. The deflections deter- 

mined by Eubanks (1963) for simply supported 

ends and opening angles of 180 ~ were infinite 

displacements due to an erroneous solution. As 

can be seen, the numerical results show excellent 

agreement with the exact solutions. 

6. Conclusions  

Both closed-form analytical and differential 

quadrature methods were used to compute the 

deflections, twist angles, angles of rotation, bend- 

ing moments and twisting moments for out-of  

-plane static behavior of a curved beam based on 

the classical and shear deformable beam theories. 

The D. Q. M. gives results which agree very well 

with the exact ones for the cases treated, while 

requiring only a limited number of grid points. 
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